
GP QB Unit 2

1. Write a short note on SINE Rule.

2. Write a short note on COSINE Rule.

3. Explain Bernstein Polynomials. [incomplete]

When (9.6) is evaluated for different values of i and n, we discover the

pattern of numbers.

This pattern of numbers is known as Pascal’s triangle.

The pattern represents the coefficients found in binomial expansions.

4. Explain B-Splines and its types. OR

 Write a short note on B-splines.

• B-splines, like B´ezier curves, use polynomials to generate a curve

segment.

• But, unlike B´ezier curves, B-splines employ a series of control

points that determine the curve’s local geometry. This feature

ensures that only a small portion of the curve is changed when a

control point is moved.

• There are two types of B-splines: rational and non-rational splines,

which divide into two further categories: uniform and non-uniform.

• Rational B-splines are formed from the ratio of two polynomials

such as

• Uniform B-Splines

o A B-spline is constructed from a string of curve segments

whose geometry

o is determined by a group of local control points. These curves

are known

o as piecewise polynomials. A curve segment does not have to

pass through a

o control point, although this may be desirable at the two end-

points

• Continuity

o Constructing curves from several segments can only succeed

if the slopes of

o the abutting curves match. As we are dealing with curves

whose slopes are

o changing everywhere, it is necessary to ensure that even the

rate of change of

o slopes is matched at the join. This aspect of curve design is

called geometric

o continuity and is determined by the continuity properties of

the basis function.

• Non-Uniform B-Splines

o Uniform B-splines are constructed from curve segments where

the parameter

o spacing is at equal intervals. Non-uniform B-splines, with the

support of a

o knot vector, provide extra shape control and the possibility of

drawing periodic

o shapes

• Non-Uniform Rational B-Splines

o Non-uniform rational B-splines (NURBS) combine the

advantages of nonuniform

o B-splines and rational polynomials: they support periodic

shapes such

o as circles, and they accurately describe curves associated with

the conic sections.

o They also play a very important role in describing geometry

used in the

o modelling of computer animation characters.

5. What are Bezier Curves? How Bernstein Polynomials are

used to interpolate the Bezier Curves?

• Bézier curves are widely used in computer graphics to model

smooth curves.

• As the curve is completely contained in the convex hull of its control

points, the points can be graphically displayed and used to

manipulate the curve intuitively.

• Affine transformations such as translation and rotation can be

applied on the curve by applying the respective transform on the

control points of the curve.

6. Explain the types of Bezier Curve.

•

•

•

7. What is Bezier curve? Explain quadratic bezier curve.

• Bézier curves are widely used in computer graphics to model

smooth curves.

• As the curve is completely contained in the convex hull of its control

points, the points can be graphically displayed and used to

manipulate the curve intuitively.

• Affine transformations such as translation and rotation can be

applied on the curve by applying the respective transform on the

control points of the curve.

•

8. Explain the concept of swap Chain and page flipping.

• Swap Chain

o A swap chain is a collection of buffers that are used for displaying

frames to the user. Each time an application presents a new frame

for display, the first buffer in the swap chain takes the place of the

displayed buffer. This process is called swapping or flipping.

o In every swap chain there are at least two buffers. The first

framebuffer, the screenbuffer, is the buffer that is rendered to the

output of the video card. The remaining buffers are known as

backbuffers.

o Each time a new frame is displayed, the first backbuffer in the swap

chain takes the place of the screenbuffer, this is called presentation

or swapping.

o A graphics adapter holds a pointer to a surface that represents the

image being displayed on the monitor, called a front buffer. As the

monitor is refreshed, the graphics card sends the contents of the

front buffer to the monitor to be displayed.

• Page Flipping

o In the page-flip method, instead of copying the data, both

buffers are capable of being displayed (both are in VRAM).

o At any one time, one buffer is actively being displayed by

the monitor, while the other, background buffer is being

drawn. When the background buffer is complete, the roles

of the two are switched.

o The page-flip is typically accomplished by modifying the

value of a pointer to the beginning of the display data in

the video memory.

o The page-flip is much faster than copying the data and can

guarantee that tearing will not be seen.

o The currently active and visible buffer is called the front

buffer, while the background page is called the "back

buffer".

9. Write a short note on depth buffering.

• One of the simplest and commonly used image space approach to

eliminate hidden surfaces is the Z-buffer or depth buffer algorithm.

• This algorithm compares surface depths at each pixel position on

the projection plane. The surface depth is measured from the view

plane along the z-axis of a viewing system.

• When object description is converted to projection co-ordinates (x,

y, z), each pixel position on the view plane is specified by x and y

coordinate, and z-value gives the depth information. Thus, object

depths can be compared by comparing the z- values.

• The Z-buffer algorithm is usually implemented in the normalized

coordinates, so that z-values range from 0 at the back-clipping

plane to 1 at the front clipping plane.

• The implementation requites another buffer memory called Z-buffer

along with the frame buffer memory required for raster display

devices.

• A Z-buffer is used to store depth values for each (x, y) position as

surfaces are processed, and the frame buffer stores the intensity

values for each position.

• At the beginning Z-buffer is initialized to zero, representing the z-

value at the back-clipping plane, and the frame buffer is initialized

to the background colour.

10. Explain the concept of multi-sampling theory. Describe how

multi- sampling is done in Direct3D.

• Because the pixels on a monitor are not infinitely small, an arbitrary

line cannot be represented perfectly on the computer monitor.

• a “stair-step” (aliasing) effect can occur when approximating a line

by a matrix of pixels.

• Similar aliasing effects occur with the edges of triangles.

• we observe aliasing (the stair-step effect when trying to represent a

line by a matrix of pixels).

• an antialiased line, generates the final color of a pixel by sampling

and using its neighboring pixels; this results in a smoother image

and dilutes the stair-step effect.

• Shrinking the pixel sizes by increasing the monitor resolution can

alleviate the problem significantly to where the stair-step effect

goes largely unnoticed.

• Multisampling in Direct3D

o DXGI_SAMPLE_DESC structure. This structure has two

members and is defined as follows:

o typedef struct DXGI_SAMPLE_DESC {

UINT Count;

UINT Quality;

} DXGI_SAMPLE_DESC, *LPDXGI_SAMPLE_DESC;

o The Count member specifies the number of samples to take

per pixel

o Quality member is used to specify the desired quality level

(what “quality level” means can vary across hardware

manufacturers).

o Use the following method to query the number of quality

levels for a given texture format and sample count:

o HRESULT ID3D11Device::CheckMultisampleQualityLevels(

DXGI_FORMAT Format, UINT SampleCount,

UINT*pNumQualityLevels);

o This method returns zero if the format and sample count

combination is not supported by the device. Otherwise, the

number of quality levels for the given combination will be

returned through the pNumQualityLevels parameter.

o Valid quality levels for a texture format and sample count

combination range from zero to pNumQualityLevels −1.

o The maximum number of samples that can be taken per pixel

is defined by:

#define D3D11_MAX_MULTISAMPLE_SAMPLE_COUNT (32)

o However, a sample count of 4 or 8 is common in order to

keep the performance and memory cost of multisampling

reasonable.

11. What is COM? Explain the texture and resources format in

DirectX.

• COM

o Component Object Model (COM) is the technology that allows

DirectX to be programming language independent and have

backwards compatibility.

o Most of the details of COM are hidden to us when programming

DirectX with C++. The only thing that we must know is that we

o obtain pointers to COM interfaces through special functions

or by the methods of another COM interface–we do not

create a COM

o interface with the C++ new keyword.

o In addition, when we are done with an interface, we call its

Release method (all COM interfaces inherit functionality from the

IUnknown COM interface, which provides the Release method)

rather than delete it

o COM objects perform their own memory management.

• Textures and Data Resource Formats

o A 2D texture is a matrix of data elements. One use for 2D

textures is to store 2D image data, where each element in the

texture stores the color of a pixel.

o However, this is not the only usage; for example, in an

advanced technique called normal mapping, each element in

the texture stores a 3D vector instead of a color.

o Therefore, although it is common to think of textures as

storing image data, they are really more general purpose than

that. A 1D texture is like a 1D array of data elements, and a

3D texture is like a 3D array of data elements.

o In addition, a texture cannot store arbitrary kinds of data; it

can only store certain kinds of data formats, which are

described by the DXGI_FORMAT enumerated type

13. State and define different trigonometry ratio and inverse of

trigonometric ratio.

• Trigonometric Ratios

•

•

14. What is interpolation? explain linear interpolation.

• In the context of computer animation, interpolation is inbetweening,

or filling in frames between the key frames.

• It typically calculates the in between frames through use of

(usually) piecewise polynomial interpolation to draw images semi-

automatically.

• Basically, an interpolant is a way of changing one number into

another.

• The real function of an interpolant is to change one number into

another in n equal steps

• Linear Interpolant

o A linear interpolant generates equal spacing between the

interpolated values for equal changes in the interpolating

parameter.

o Given two numbers n1 and n2, which represent the start and

final values of the interpolant, we require an interpolated

value controlled by a parameter t that varies between 0 and

1.

o When t = 0, the result is n1, and when t = 1, the result is n2.

o A solution to this problem is given by

n = n1 + t(n2 − n1)

15. Explain the following interpolation
 a. trigonometric interpolation

 b. cubic interpolation
•

•

•

•

17. Explain the ways to examine to test whether the point is
inside, outside or touching a triangle.

• Area of a Triangle
o The area of the triangle is given by:

o If the area of triangle (P1, P2, Pt) is positive, Pt must be to the

left of the line (P1, P2).

o If the area of triangle (P2, P3, Pt) is positive, Pt must be to the
left of the line (P2, P3).

o If the area of triangle (P3, P1, Pt) is positive, Pt must be to the
left of the line (P3, P1).

o If all the above tests are positive, Pt is inside the triangle.
o Furthermore, if one area is zero and the other areas are positive,

the point is on the boundary, and if two areas are zero and the
other positive, the point is on a vertex

• Hessian Normal Form

o We can determine whether a point is inside, touching or
outside a triangle by representing the triangle’s edges in the

Hessian normal form, and testing which partition the point is
located in.

o If we arrange that the normal vectors are pointing towards
the inside of the triangle, any point inside the triangle will

create a positive result when tested against the edge equation
o We are only interested in the sign of the left-hand

expressions, which can be tested for any arbitrary point (x,
y).

o If they are all positive, the point is inside the triangle.
o If one expression is negative, the point is outside.

o If one expression is zero, the point is on an edge, and if two
expressions are zero, the point is on a vertex.

18. Explain lambert's cosine law.

• Lambert’s law states that the intensity of illumination on a diffuse
surface is proportional to the cosine of the angle between the

surface normal vector and the light source direction.
• An important consequence of Lambert's cosine law is that when an

area element on the surface is viewed from any angle, it has the
same radiance.

19. Explain the following lightning
 a. Diffuse lighting

 b. Ambient lighting
 c. Specular lighting

• Diffuse Lighting
o When light strikes a point on such a surface, the light rays

scatter in various random directions; this is called a diffuse
reflection.

o In our approximation for modelling this kind of light/surface
interaction, we stipulate that the light scatters equally in all

directions above the surface; consequently, the reflected light
will reach the eye no matter the viewpoint (eye position).

Therefore, we do not need to take the viewpoint into
consideration (i.e., the diffuse lighting calculation is viewpoint

o independent), and the color of a point on the surface will

always look the same no matter the viewpoint.
• Ambient lighting

o Much of the light we see in the real world is indirect. For
example, a hallway connected to a room might not be in the

direct line of sight with a light source in the room, but the
light bounces off the walls in the room and some of it may

make it into the hallway, thereby lightening it up a bit.
o As a second example, suppose we are sitting in a room with a

teapot on a desk and there is one light source in the room.
Only one side of the teapot is in the direct line of sight of the

light source; nevertheless, the backside of the teapot would
not be pitch black.

o This is because some light scatters off the walls or other
objects in the room and eventually strikes the backside of the

teapot

o This is called Ambient Lighting
• Specular lighting

o When light strikes such a surface, the light rays reflect sharply
in a general direction through a cone of reflectance; this is

called a specular reflection.
o In contrast to diffuse light, specular light might not travel into

the eye because it reflects in a specific direction; the specular
lighting calculation is viewpoint dependent.

o This means that as the eye moves about the scene, the
amount of specular light it receives will change.

20. State the difference between parallel light and spotlight.
• Parallel Lights

o A parallel light (or directional light) approximates a light
source that is very far away.

o Consequently, we can approximate all incoming light rays as
parallel to each other.

o A parallel light source is defined by a vector, which specifies
the direction the light rays travel. Because the light rays are

parallel, they all use the same direction vector.
o The light vector aims in the opposite direction the light rays

travel.
o A common example of a real directional light source is the sun

• Spot Lights
o A spot light behaves exactly how it sounds, like a real spot

light, and provides a very direct source of light.

o One of the key benefits that you get when using a spot light is
the directionally that you get from the light.

o The spot light is emitted through a cone and you can control
how wide the cone angle is which determines how much of

the area is actually illuminated.
o Objects closer to the spot light will be brighter, and depending

on the how wide the cone is the light will either be softer or
harder.

o A good physical example of a spotlight is a flashlight.

21. Explain in brief magnification and minification.
• Magnification

o The elements of a texture map should be thought of as
discrete color samples from a continuous image; they should

not be thought of as rectangles with areas.

o So the question is: What happens if we have texture
coordinates (u, v) that do not coincide with one of the texel

points?
o Suppose the player zooms in on a wall in the scene so that

the wall covers the entire screen.
o For the sake of example, suppose the monitor resolution is

1024 × 1024 and the wall’s texture resolution is 256 × 256.
o This illustrates texture magnification—we are trying to cover

many pixels with a few texels.
o In our example, between every texel point lies four pixels.

Each pixel will be given a pair of unique texture coordinates
when the vertex texture coordinates are interpolated across

the triangle.
o Thus there will be pixels with texture coordinates that do not

coincide with one of the texel points.

o Given the colors at the texels we can approximate the colors
between texels using interpolation.

• Minification
o Minification is the opposite of magnification. In minification,

too many texels are being mapped to too few pixels.
o For instance, consider the following situation where we have a

wall with a 256 × 256 texture mapped over it. The eye,
looking at the wall, keeps moving back so that the wall gets

smaller and smaller until it only covers 64 × 64 pixels on
screen.

o So now we have 256 × 256 texels getting mapped to 64 × 64
screen pixels. In this situation, texture coordinates for pixels

will still generally not coincide with any of the texels of the
texture map, so constant and linear interpolation filters still

apply to the minification case.
o However, there is more that can be done with minification.

Intuitively, a sort of average downsampling of the 256 × 256

texels should be taken to reduce it to 64 × 64.
o The technique of mipmapping offers an efficient

approximation for this at the expense of some extra memory.

22. Explain texture coordinates and state how to create and
enable texture.

• Texture Coordinates
o Texture coordinates define how an image (or portion of an

image) gets mapped to a geometry.
o A texture coordinate is associated with each vertex on the

geometry, and it indicates what point within the texture

image should be mapped to that vertex.
o Texture coordinates are not stored with appearance, but on

each geometry individually. This allows separate geometries
to share an appearance with an image texture, yet display

distinct portions of that image on each geometry.
o u and v Texture Coordinates

Each texture coordinate is, at a minimum, a (u,v) pair, which
is the horizontal and vertical location in texture space,

respectively.
o Texture coordinates are used to define a triangle on the

texture that gets mapped to the 3D triangle.
• CREATING AND ENABLING A TEXTURE

o 1. Call D3DX11CreateTextureFromFile to create the
ID3D11Texture2D object from an image file stored on disk.

o 2. Call ID3D11Device::CreateShaderResourceView to create

the corresponding shader resource view to the texture.

o Both of these steps can be done at once with the following
D3DX function:

HRESULT D3DX11CreateShaderResourceViewFromFile(
ID3D11Device *pDevice,

LPCTSTR pSrcFile,
D3DX11_IMAGE_LOAD_INFO *pLoadInfo,

ID3DX11ThreadPump *pPump,
ID3D11ShaderResourceView **ppShaderResourceView,

HRESULT *pHResult
);

23. What is blending? State blend operation and blend factors.

28. What is Blending? Explain the Blending equation, Blend
Operations, Blend Factors and Blend State.

29. Write a Note on Blending.

• Blending techniques allow us to blend (combine) the pixels that we

are currently rasterizing (so-called source pixels) with the pixels
that were previously rasterized to the back buffer (so-called

destination pixels).

• This technique enables us, among other things, to render semi-
transparent objects such as water and glass.

• THE BLENDING EQUATION
o Let Csrc be the color output from the pixel shader for the ijth

pixel we are currently rasterizing (source pixel), and let Cdst
be the color of the ijth pixel currently on the back buffer

(destination pixel).
o Without blending, Csrc would overwrite and become the new

color of the ijth back buffer pixel.
o But, with blending Csrc and Cdst are blended together to get

the new color C that will overwrite Cdst (i.e., the blended
color C will be written to the ijth pixel of the back buffer).

o Direct3D uses the following blending equation to blend the
source and destination pixel colors:

o

•

24. What is Direct3d? Explain the resemblance between
Direct3D and DirectX?

• Direct3D is a proprietary API by Microsoft that provides functions to

render two-dimensional (2D) and three-dimensional (3D) graphics,

and uses hardware acceleration if available on the graphics card.

• It was designed by Microsoft Corporation for use on the Windows

platform.

• Part of DirectX, Direct3D is used to render three-dimensional

graphics in applications where performance is important, such as
games.

• Direct3D uses hardware acceleration if it is available on the graphics
card, allowing for hardware acceleration of the entire 3D rendering

pipeline or even only partial acceleration.
• Microsoft DirectX is a collection of application programming

interfaces (APIs) for handling tasks related to multimedia, especially
game programming and video, on Microsoft platforms. Originally,

the names of these APIs all began with Direct, such as Direct3D

• The name DirectX was coined as a shorthand term for all of these
APIs (the X standing in for the particular API names) and soon

became the name of the collection.
• Direct3D (the 3D graphics API within DirectX) is widely used in the

development of video games for Microsoft Windows and the Xbox
line of consoles. Direct3D is also used by other software applications

for visualization and graphics tasks such as CAD/CAM engineering.
• As Direct3D is the most widely publicized component of DirectX, it is

common to see the names "DirectX" and "Direct3D" used
interchangeably.

25. Explain component object model(com) and any two
Interfaces provided by Direct3D?

• COM

o Component Object Model (COM) is the technology that allows

DirectX to be programming language independent and have

backwards compatibility.

o Most of the details of COM are hidden to us when programming

DirectX with C++.

o The only thing that we must know is that we obtain

pointers to COM interfaces through special functions or by

the methods of another COM interface–we do not create a

COM interface with the C++ new keyword.

o In addition, when we are done with an interface, we call its

Release method (all COM interfaces inherit functionality from the

IUnknown COM interface, which provides the Release method)

rather than delete it

o COM objects perform their own memory management.

• ID3DXFile interface
o Applications use the methods of the ID3DXFile interface to

create instances of the ID3DXFileEnumObject and
ID3DXFileSaveObject interfaces, and to register templates.

o Members
The ID3DXFile interface inherits from the IUnknown interface.

o Methods
The ID3DXFile interface has these methods.

o CreateEnumObject
Creates an enumerator object that will read a .x file.

o CreateSaveObject
Creates a save object that will be used to save data to a .x

file.

o RegisterEnumTemplates
Registers custom templates, given an ID3DXFileEnumObject

enumeration object.
o RegisterTemplates

Registers custom templates.
o Remarks

An ID3DXFile object also contains a local template store. This
local storage may be added to only with the

ID3DXFile::RegisterEnumTemplates and
ID3DXFile::RegisterTemplates methods.

• ID3DXFileEnumObject interface
o Applications use the methods of the ID3DXFileEnumObject

interface to cycle through the child file data objects in the file
and to retrieve a child object by its globally unique identifier

(GUID) or by its name.

o Members

The ID3DXFileEnumObject interface inherits from the
IUnknown interface.

o Methods
The ID3DXFileEnumObject interface has these methods.

o GetChild
Retrieves a child object in this file data object.

o GetChildren
Retrieves the number of child objects in this file data object.

o GetDataObjectById
Retrieves the data object that has the specified GUID.

o GetDataObjectByName
Retrieves the data object that has the specified name.

o GetFile
Retrieves the ID3DXFile object.

o Remarks

The GUID for the ID3DXFileEnumObject interface is
IID_ID3DXFileEnumObject.

o The LPD3DXFILEENUMOBJECT type is defined as a pointer to
this interface.

26. Explain the Input Assembler Stage of rendering Pipeline and

 explain the vertices and its primitives in detail.
• THE INPUT ASSEMBLER STAGE

o The input assembler (IA) stage reads geometric data (vertices
and indices) from memory and uses it to assemble geometric

primitives (e.g., triangles, lines).

• Vertices
o A vertex in Direct3D can consist of additional data besides

spatial location, which allows us to perform more
sophisticated rendering effects.

o We can add normal vectors to our vertices to implement
o lighting, and texture coordinates to our vertices to implement

texturing.
o Direct3D gives us the flexibility to define our own vertex

formats (i.e., it allows us to define the components of a
vertex).

• Primitives
o Vertices are bound to the rendering pipeline in a special

Direct3D data structure called a vertex buffer.
o A vertex buffer just stores a list of vertices in contiguous

memory. However, it does not say how these vertices should

be put together to form geometric primitives.

o For example, should every two vertices in the vertex buffer be
interpreted as a line or should every three vertices in the

vertex buffer be interpreted as a triangle?
o We tell Direct3D how to form geometric primitives from the

vertex data by specifying the primitive topology:
void ID3D11DeviceContext::IASetPrimitiveTopology(

D3D11_PRIMITIVE_TOPOLOGY Topology);

27. Explain Rasterization Stage in detail.
• The rasterization stage converts vector information (composed of

shapes or primitives) into a raster image (composed of pixels) for
the purpose of displaying real-time 3D graphics.

• During rasterization, each primitive is converted into pixels, while

interpolating per-vertex values across each primitive.
• Rasterization includes clipping vertices to the view frustum,

performing a divide by z to provide perspective, mapping primitives
to a 2D viewport, and determining how to invoke the pixel shader.

• While using a pixel shader is optional, the rasterizer stage always
performs clipping, a perspective divide to transform the points into

homogeneous space, and maps the vertices to the viewport.
• Vertices (x,y,z,w), coming into the rasterizer stage are assumed to

be in homogeneous clip-space. In this coordinate space the X axis
points right, Y points up and Z points away from camera.

• Viewport Transform
o After clipping, the hardware can do the perspective divide to

transform from homogeneous clip space to normalized device
coordinates (NDC).

o Once vertices are in NDC space, the 2D x- and y- coordinates

forming the 2D image are transformed to a rectangle on the
back buffer called the viewport.

o After this transform, the x- and y-coordinates are in units of
pixels.

• Backface Culling
o A triangle has two sides. To distinguish between the two sides

we use the following convention.
o If the triangle vertices are ordered v0, v1, v2 then we

compute the triangle normal n like so:
The side the normal vector emanates from is the front side

and the other side is the back side.
o We say that a triangle is front-facing if the viewer sees the

front side of a triangle, and we say a triangle is back-facing if
the viewer sees the back side of a triangle.

o Now, most objects in 3D worlds are enclosed solid objects.

o Because the front-facing triangles occlude the back-facing
triangles, it makes no sense to draw them.

o Backface culling refers to the process of discarding back-
facing triangles from the pipeline.

o This can potentially reduce the amount of triangles that need
to be processed by half.

• Vertex Attribute Interpolation
o We define a triangle by specifying its vertices. In addition to

position, we can attach attributes to vertices such as colors,
normal vectors, and texture coordinates.

o After the viewport transform, these attributes need to be
interpolated for each pixel covering the triangle.

o In addition to vertex attributes, vertex depth values need to
get interpolated so that each pixel has a depth value for the

depth buffering algorithm.
o Essentially, interpolation allows us to use the vertex values to

compute values for the interior pixels.

30. Explain the following terms with respect to geometry:
 a. Angles

 b. Intercept Theorems
 c. Golden Section

 d. Equilateral triangle
 e. Circle

31. Explain in brief the rendering pipeline stages with suitable
 diagram.

Input-

Assembler

Stage

The Direct3D 10 and higher API separates functional areas of the pipeline

into stages; the first stage in the pipeline is the input-assembler (IA) stage.

Vertex Shader

Stage

The vertex-shader (VS) stage processes vertices from the input assembler,

performing per-vertex operations such as transformations, skinning,

morphing, and per-vertex lighting. Vertex shaders always operate on a single

input vertex and produce a single output vertex. The vertex shader stage

must always be active for the pipeline to execute. If no vertex modification or

transformation is required, a pass-through vertex shader must be created

and set to the pipeline.

Tessellation

Stages

The Direct3D 11 runtime supports three new stages that implement

tessellation, which converts low-detail subdivision surfaces into higher-detail

primitives on the GPU. Tessellation tiles (or breaks up) high-order surfaces

into suitable structures for rendering.

Geometry

Shader Stage

The geometry-shader (GS) stage runs application-specified shader code with

vertices as input and the ability to generate vertices on output.

Stream-Outut

Stage

The purpose of the stream-output stage is to continuously output (or

stream) vertex data from the geometry-shader stage (or the vertex-shader

stage if the geometry-shader stage is inactive) to one or more buffers in

memory

Rasterizer

Stage

The rasterization stage converts vector information (composed of shapes or

primitives) into a raster image (composed of pixels) for the purpose of

displaying real-time 3D graphics.

Pixel Shader

Stage

The pixel-shader stage (PS) enables rich shading techniques such as per-

pixel lighting and post-processing. A pixel shader is a program that

combines constant variables, texture data, interpolated per-vertex values,

and other data to produce per-pixel outputs. The rasterizer stage invokes a

pixel shader once for each pixel covered by a primitive, however, it is

possible to specify a NULL shader to avoid running a shader.

Output-

Merger Stage

The output-merger (OM) stage generates the final rendered pixel color using

a combination of pipeline state, the pixel data generated by the pixel

shaders, the contents of the render targets, and the contents of the

depth/stencil buffers. The OM stage is the final step for determining which

pixels are visible (with depth-stencil testing) and blending the final pixel

colors.

https://docs.microsoft.com/en-us/windows/desktop/direct3d11/d3d10-graphics-programming-guide-input-assembler-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/d3d10-graphics-programming-guide-input-assembler-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/d3d10-graphics-programming-guide-input-assembler-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/vertex-shader-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/vertex-shader-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/direct3d-11-advanced-stages-tessellation
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/direct3d-11-advanced-stages-tessellation
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/geometry-shader-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/geometry-shader-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/d3d10-graphics-programming-guide-output-stream-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/d3d10-graphics-programming-guide-output-stream-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/d3d10-graphics-programming-guide-rasterizer-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/d3d10-graphics-programming-guide-rasterizer-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/pixel-shader-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/pixel-shader-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/d3d10-graphics-programming-guide-output-merger-stage
https://docs.microsoft.com/en-us/windows/desktop/direct3d11/d3d10-graphics-programming-guide-output-merger-stage

